

MISSISSIPPI STATE DEPARTMENT OF HEALTH

BUREAU OF PUBLIC WATER SUPPLY

CALENDAR YEAR 2010 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM

065006 # 065006 01, # 065006 02
List PWS ID #s for all Water Systems Covered by this CCR

Pineville Water Association,
Public Water Supply Name

The Fe confide must be	ederal Safe Drinking Water Act requires each <i>community</i> public water system to develop and distribute a consumence report (CCR) to its customers each year. Depending on the population served by the public water system, this CC mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request.
	Answer the Following Questions Regarding the Consumer Confidence Report
	Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other)
	Advertisement in local paper On water bills Other
	Date customers were informed: $\frac{5/18/2011}{5-31-2011}$
	CCR was distributed by mail or other direct delivery. Specify other direct delivery methods:
	Date Mailed/Distributed: / /
X	CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)
	Name of Newspaper: Smith Co Reformer
	Date Published: 5/16/11
	CCR was posted in public places. (Attach list of locations)
	Date Posted: / /
	CCR was posted on a publicly accessible internet site at the address: www
	FICATION
I hereby the form consister Departm	certify that a consumer confidence report (CCR) has been distributed to the customers of this public water system in and manner identified above. I further certify that the information included in this CCR is true and correct and is it with the water quality monitoring data provided to the public water system officials by the Mississippi State ent of Health, Bureau of Public Water Supply.
Wa Name/T	uda Crast, Clark itle (President, Mayor, Owner, etc.) 5-31-2011 Date
	Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518

570 East Woodrow Wilson • Post Office Box 1700 • Jackson, Mississippi 39215-1700 601/576-7634 • Fax 601/576-7931 • www.HealthyMS.com

2010 Annual Drinking Water Quality Report Pineville Water Association, Inc. PWS#: 0650006, 0650017 & 0650018 May 2011

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Sparta Sand & Meridian Upper Wilcox Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. The general susceptibility rankings assigned to each well of this system are provided immediately below. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Pineville Water Association have received lower to moderate susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Wanda Craft at 601-789-5005. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday of each month at 7:00 PM at the office located at 8305 HWY 501.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that we detected during for the period of January 1st to December 31st, 2010. In cases where monitoring wasn't required in 2010, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

PWS ID#	: 06500	06	T	TS				
Contaminant	Violatio n Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contai	minants				·		
10. Barium	N	2010	.03	.0103	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits

13. Chromium	N	2010	4.2	2.1 – 4.2	ppb	100		Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N	2008*	.2	0	ppm	1.3	,	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
17. Lead	N	2008*	8	0	ppb	0		Corrosion of household plumbing systems, erosion of natural deposits
21. Selenium	N .	2010	1.2	.9 – 1.2	ppb	50		Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Volatile O	rgani	c Conta	minant	ts				
Volatile O	rgani	2010	minant	No Range	ppm	10		Discharge from petroleum factories; discharge from chemical factories
	N	2010	.001		ppm	0	- 1	

PWS ID#:	065003	17	\mathbf{T}	EST RESUL	TS				
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination	
Inorganic	Contai	ninants							
10. Barium	N	2010	.003	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	
13. Chromium	N	2010	5.6	No Range	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits	
14. Copper	N	2008*	.2	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
17. Lead	N	2008*	2	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits	
21. Selenium	N	2010	.5	No Range	ppb	50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines	
Volatile O	rganic	Contan	ninants						
76. Xylenes	N	2010	.004	.0009004	ppm	10	10	Discharge from petroleum factories; discharge from chemical factories	
Disinfectio	n By-F	roducts	3						
82. TTHM [Total trihalomethanes]	N	2010	17.43	No Range	ppb	0	80	By-product of drinking water chlorination.	
Chlorine	N	2010	.64	. 5 -1	ppm	0	MDRL = 4	Water additive used to control microbes	

PWS ID#	: 065001	18	TEST RESULTS					
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination

Inorganic 10. Barium	N	2010	.002	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natura deposits
13. Chromium	N	2010	8.6	No Range	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N	2008*	.2	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
17. Lead	N	2008*	3	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
21. Selenium	N	2010	.7	No Range	ppb	50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
				····	Dom	1	1	Discharge from petroleum factories
Volatile C 74. Toluene 76. Xylenes	Organi	2010 2010	minant	No Range No Range	ppm ppm	1 10	10	Discharge from petroleum factories Discharge from petroleum factories; discharge from chemical factories
74. Toluene 76. Xylenes Disinfecti	on By	2010 2010 - Produc	.0005 .0001	No Range No Range	ppm	1 10	1 10	Discharge from petroleum factories; discharge from chemical factories
74. Toluene 76. Xylenes Disinfection	N N	2010 2010	.0005	No Range				Discharge from petroleum factories; discharge from chemical factories By-Product of drinking water disinfection.
74. Toluene 76. Xylenes	on By	2010 2010 - Produc	.0005 .0001	No Range No Range	ppm			Discharge from petroleum factories; discharge from chemical factories Discharge from petroleum factories; discharge from chemical factories

^{*} Most recent sample. No sample required for 2010.

As you can see by the table, our system had no contaminant violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

The Pineville Water Association, Inc. works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

Notice: This report will not be mailed to customers, however, copies are available upon request by calling 601-789-5005.

2010 ANNUAL DRINKING WATER QUALITY PINEVILLE WATER ASSOCIATION PWS#: 0650006 & 0650017 & 0650018 • N

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about th you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts yearment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawin Wilcox Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility potential sources of

The source water assessment has been completed for our public water system to determine the overall susceptibility potential sources of contamination. The general susceptibility rankings assigned to each well of this system are provided immediately below. A pow the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The we received a lower to moderate susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Wanda Craft at 601.789.5005. led about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesdacated at 8305 Hwy. 501.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all detected during for the period of January 1st to December 31st, 2010. In cases where monitoring wasn't required in 2010, the table reflects thee surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substanctuals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic syst wildlife; morganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industand gas production, mining or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-whical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum producind septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities ink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking wter, longly expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand thetions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a wa

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allow to the MCLGs as feasible using the best available treatment technology.

21. Selenium	N	2010	7.7	No Range	ppb	oleum & metal ischarge from
Volatile Organic	Contamir	iants				
74. Toluene	N	2010	.0005	No Range	ppm	ım factories
76. Xylenes N	2010	.0001	No Range	ppm	10 10	im factories I factories.
Disinfection By-	Products					N 67 4,4 1 7 1
81.HAA5	N	2010	10	No Range	ppb	water disinfection.
82. TTHM	N	2010	13.1	No Range	ppb	water
(Total		•				1
trihalomethanes)		- 25				
Chlorine	N	2010	.64	.5 - 1	ppm	ontrol microbes.

Most recent sample. No sample required for 2010.

As you can see by the table, our system had no contaminant violations. We're proud that your drinking water meets or exave learned through our monitoring and testing that some constituents have been detected however the EPA has determined that your water I

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring water meets health standards. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In pring requirements, MSDH now notifies systems of any missing samples prior to t he end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children, als and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality dif materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead experiments water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewalealth Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or morganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonable be expected to conts. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and p the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-comproming chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some eld infections. These peole should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate poridium and other microbiological contaminants are available from the Safe Drinking Water Holline 1-800-426-4791.

The Pineville Water Association, Inc. works around the clock to provide top quality water to every tap. We ask that all which are the heart of our community, our way of life and our children's future. *Notice: This report will not be mailed to customers, how 601.789.5005.

Plans are fully under way for the two mission trips we will participate in in late May and early June. We will be re-

By Yvonne Robinson

Liperty-

This good memories now.
This week twould like to sur your memories by bringing to the present, things, that may

Mary Lou and Jerry Powell spent Friday night babysitting Andrea's dog, Dud. On Saturday thy enjoyed Hailey's birthday party. They also attended Hailey's dance recital recently.

door again, that same man was door again, that same man instead of acting like she had just got there, she started telling him she didn't see anything. How very embarrassing.

Our praym and his family
Harold Aren a week at Disney
My grandw they are having
good friends
Iyn Arender,d Nicky Walker
the funeral huston, MS Satur-

Prentis a He is still in the Honors Banhille training and day night. In overseas, gram and a d good supper at have some tesday night and a ented childrof folks.

THE INGST WHI SCIVICEMEN IN

of Mississippi, Smith

NALLY CAME before me, the ned a Notary Public in and for COUNTY, MISSISSIPPI the CLERK of the SMITH Y REFORMER, a newspapered in the Town of Raleigh, Smith in said State, who being duly deposes and says that the SMITH TY REFORMER is a newspapered and prescribed in §13-3-31 of sissisppi Code 1972 Annotated the publication of a notice, of the annexed is a copy, in the

l\f n.
annus C
king Water
In Robert
51 9
made in said papertimes
ely, to-wit:
2 day of May 20//
_ day of20
<u>day of</u> 20
it day of20
W
hile Lucada
ht OFFICE CLERK
d
er o and subscribed before me,
th Management
on 1 20 11

____ Words

Cost

2010 ANNUAL DRINKING WATER QUALITY REPORT PINEVILLE WATER ASSOCIATION, INC. PWS#: 0650006 & 0650017 & 0650018 * MAY 2011 you's Annual Quality Water Report. This report it designed to inform your about the guilty water and service and service and service and service and service water and the service and service water and service and service water and service and se

PWS ID #06	450006			TEST RESU	LTS		TOTAL POR	The second secon
Contaminant	Violation Y/N	Date	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Source of Contamination
Inorganic C	ontaminants N	2010	.03	.0103	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
3. Chromium	N	2010	4.2	2.1 - 4.2	ррь	100	100	Discharge from steel & pulp mills crosion of natural deposits.
14. Соррег	N	2008*	.2	0	рріп	1.3	Al=1.3	Corrosion of household plumbing syntems erosion of nat. dep.; leaching from wood preservatives
17. Lead	N	2008*	8	0	ppb	0	AL=15	Corrosion of household plumbing systems, crosion of natural deposi
21. Selenium	N .	2010	1.2	9 - 1.2	ррь	50	50.	Discharge from petrojcum & meta refineries; croston of natural deposits; discharge from mines.
	L. Contonia	L			-		1000	
Yolatile Q13 76. Xylenes	anic Contamin	2010	100.	No Range	ppm	10	10	Water additive used to microbes.
		<u> </u>						
Disinfection 52. TTHM Float	By-Products N	2010	3.76	No Range	ppb	0	80	By-product of drinking water chlorisation.
uibilometinae. Chlorine	s) N	2010	.64	3-1	ppm	0	MDRI	Water additive used to control miterobes.

		75.7	Detected	or # of Samples Exceeding MCL/ACL	CALCON ACTOR			to application of held subsci-
Inorganic C	ontaminants) (A) (A) (A) (A)		<u> </u>	<u> </u>
IO. Barrom	l N	2010	.003	No Range	F 1/222 (30.676)	2	2	Discharge of drilling wastes;
o. panon		2010	.003	No Kange	ppm		1	discharge from metal refineries; crosion of natural deposits.
3. Chromium	N	2010	5.6	No Range	ррь	100	100	Discharge from steel & pulp mills; erosion of natural deposits.
l4. Copper	N	2008*	,2		ppm	1.3	Al=1.3	Corrosion of household plumbing systems, erosion of natural deposits leaching from wood preservatives.
i7. Lead	N	2008*	2	0	ppb	0	AL=15	from septic tanks, sewage; erosion Corrosion of household plumbing systems, erosion of natural deposits.
I. Nelenium	N	2010	.5	No Range	ppb	50	50	Discharge from petroleum & metal of natural deposits discharge from mines.
olatile Org	anic Contamin	ants				Sec. 31	11,119	
6. Xylenes	N	2010	.004	.0009004	ppm	10	10	Discharge from petroleum factories discharge from chemical factories.
disinfection	By-Products			4. 1444		4,045		and the second
2. TTHM Total ribatomethanes)	N	2010	17.43	No Range	bbp	0	80	By-pruduct of drinking water chlorination.
Morine	N	2010	.64	.5 - 1	ppm	0	MDRL ≈4	Water additive used to control mircrobes.
WS ID #06	450006			TEST RESU	ILTS		1,110	
Contaminant	Violation Y/N	Date	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Source of Contumination
Inorganie Co	ntaminants		L	Literonia mediner	*** (1/4/ ** 1/1/4)	3.75%	North	
O. Barium	N	2010	.002	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
3. Chromiana	N	2010	8.6	No Range	ррь	100	100	Discharge from steel & pulp erosion of natural deposits
4. Соррег	И	2008*	.2	0	ppm	1,3	Al=1.3	Corrosion of household plumbing systems, erosion of natural deposits leaching from wood preservatives, from septic tanks, sewage; erosion
7. Lead	N	2008*	-3 -	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits.
I. Selenium	N	2010	.7	No Range	ppb	50	50	Discharge from petroleum & metal of natural deposits discharge from mines.
				1	11.500	5 6		
∕olafile Org	anic Contamin	ants	L	L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100000	STATE OF	
4. Delucue 6. Xylenes N	N 2010	2010	.0005 Runge	No Range	Ppm 10 10	1		Discharge from petroleum factories Discharge from petroleum factories discharge from eliemical factories
4 Tolucus 6 Xylenes N Distriction	N	2010 6001 No	Runge	ppm	10 10	1		Discharge from petroleum factories Discharge from petroleum factories discharge from chemical factories
4. Tolucue 6 Xylenes N	N 2010	2010 6001 No 2010				0 0	60 80	Discharge from petroleum factories Discharge from petroleum factories

** INVOICE **

Page 1

Smith County Reformer Acctg. only 601-825-4004 P.O. Box 103 BRANDON, MS 39043-0103 Telephone 601-782-4358

Invoice # 64785 Invoice Date 5/18/11

64785

Bill To: Pineville Water Assoc. 13

P.O. Box 37

Deliver To: Pineville Water Assoc. 13

P.O. Box 37

Raleigh, MS 39153

Raleigh, MS 39153

Customer #: 8119

Your PO:

Terms: due by the 10th

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Item-#	Description	Qty Unit	Price F	Ext-price
\$6.50 per co 4x21.5 colur 2010 Annual		84.0 EACH	6.50	546.00
Proof		1.0 EACH	3.00	3.00
			TOTAL es Tax count	549.00 0.00
		BALANCE DU	E>	549.00